Section 3.3: Reduced echelon form

New vocabulary:

- reduced echelon matrix
- Homogeneous system of equations
- Trivial solution (to a HSOE) \approx Zero solution
- Principal diagonal $\Delta[\because$? $]=$ leading
- Identity matrix $[? \cdot:]$ diagonal
- Gauss-Jordan elimination $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$
the right hand side is all 0
schelar maxix: $\left[\begin{array}{ccccccc}0 & 0 & \forall & * & * & \cdots & * \\ 0 & 0 & 0 & 0 & * & \cdots & * \\ 0 & & \cdots & & \\ 0 & & & & \end{array}\right]$

1. Zero nous at the bottom
2. Each leading entry occurs in a later column Than the leading entree of eacher nous.
reduced echelon matrix hal 1. \& 2 and
3. Leading entries are 1, and all other en ines in a column with a l.e. are O

$$
\left[\begin{array}{cccccc}
0 \gamma & 1 * & 0 & * & * \\
0 & 0 & 0 & 0 & 1 & * \\
0 & & - & \cdots & * & 0
\end{array}\right]
$$

Recall: leading entries, free variables

Question:
Use Gauss-Jordan elimination to solve

$$
\begin{array}{r}
2 y+4 z=8 \\
2 x+4 y+z=-1 \\
x+3 y+2 z=3
\end{array}
$$

(1) $\longleftrightarrow(3)$

$$
\begin{aligned}
x+3 y+2 z & =3 \\
2 x+4 y+z & =-1 \\
2 y+4 z & =8
\end{aligned}
$$

(2) \rightarrow (2) -2 (1)

$$
\begin{aligned}
x+3 y+2 z & =3 \\
0-2 y-3 z & =-7 \\
2 y+4 z & =8
\end{aligned}
$$

(3) $\rightarrow(3)+(2)$

$$
\begin{aligned}
x+3 y+2 z & =3 \\
0-2 y-3 z & =-7 \\
z & =1
\end{aligned}
$$

(2) $\rightarrow-\frac{1}{2}$ (2)

$$
\begin{aligned}
x+3 y+2 z & =3 \\
3 z & =?
\end{aligned}
$$

$$
\begin{aligned}
& y+\frac{3}{2} z=\frac{7}{2} \\
& z=1
\end{aligned}
$$

$(1) \rightarrow(1)-2(3)$
$\begin{aligned}(2) \rightarrow(2)-\frac{3}{2}(3)^{2}=1 & =1 \\ x+3 y & =2 \quad \mathrm{~N}, ~ \\ y z & =1\end{aligned}$ $\begin{aligned} y & =2 \\ z & =1\end{aligned}$

Question:
Question:
Find the reduced echelon form of $\left[\begin{array}{lll}0 & 2 & 4 \\ 2 & 4 & 1 \\ 1 & 3 & 2\end{array}\right]$
and of $\left[\begin{array}{cccc}0 & 2 & 4 & 8 \\ 2 & 4 & 1 & -1\end{array}\right]$

Solutton: (1) $\leftrightarrow(3) \cdots$

(1) \rightarrow (1)-3(2) $x \quad=-5$
$y=2$
Solution: $(x, y, z)=(-5,2, z)=1$

Theorems

- Reduced echelon form is unique. (Theorem 1)
- More variables than equations imply the number of solutions is either 0 or infinity. (Theorem 3+)
- A homogeneous system always has a solution.
- A system with n variables and n equations has a unique solution if and only if the reduced echelon form to the left of the line is the identity.
- If there are infinitely many solutions, then there are free variables

A homogeneous system with n variables and n equations has a unique solution if and only if the coefficient matrix has reduced echelon form the identity. (Theorem 4)

m equations If $n>m$, there " 1 always a free varia If the system is consistent, we get infinitely many solutions, Inconsistent: no solutions,

- The zero solution = the trivial solution

The identity on the le pt producer a unique solution V.
If we don't get the identity on the lett here is a row of zeros and a free variable.

Question:
Find the reduced echelon form of $\left[\begin{array}{lll}1 & 2 & 5 \\ 2 & 4 & 2 \\ 3 & 6 & 7\end{array}\right]$
a. $\left[\begin{array}{ccc}1 & 2 & 5 \\ 0 & 0 & -8 \\ 0 & 0 & 0\end{array}\right]$ leading entry must be 1
b. $\quad\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
c. $\quad\left[\begin{array}{lll}1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right] \quad /$
d. $\quad\left[\begin{array}{lll}1 & 2 & 0 \\ 0 & 0 & 1\end{array}\right]$
e. None of the above
(2) $\rightarrow-\frac{1}{8}(2)\left[\begin{array}{lll}1 & 2 & 5 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$
(1) $\rightarrow 0-5(2)\left[\begin{array}{ccc}2 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$

True or false?

1. If a system of linear equations has more equations than unknown variables then there is no solution.
2. If a system has fewer equations than variables there is always a solution.
3. If a system has fewer equations than variables and there is at least one solution then there are infinitely many solutions.
